
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- The motion of an object can be described mathematically by using equations showing the displacement, velocity, and acceleration of an object at a given time.
- Notation and assumptions:
- $t_{0}=0$, so t will represent the final time.
- Motion will be in one dimension, using x for convenience. \qquad
- Position and velocity will be represented as follows:
- x_{0}, x - initial and final position
- v_{0}, v - initial and final velocity
- Acceleration is constant
\qquad
- $\bar{a}=a=$ constant
- Rearranging the equations defining velocity and acceleration.

Velocity
$\bar{v}_{x}=\frac{\Delta x}{\Delta t}=\frac{x-x_{0}}{t}$
Acceleration

For constant acceleration $a_{x}=\frac{\Delta v_{x}}{\Delta t}$
$\bar{v}_{x}=\frac{v_{x 0}+v_{x}}{2}$
$a_{x}=\frac{v_{x}-v_{x 0}}{t}$
$\frac{v_{x 0}+v_{x}}{2}=\frac{x-x_{0}}{t}$
$v_{x}=v_{x 0}+a_{x} t$
$v_{x}=2\left(\frac{x-x_{0}}{t}\right)-v_{x 0}$

- Set the two equations equal to each other and solve for x.
$2\left(\frac{x-x_{0}}{t}\right)-v_{x 0}=v_{x 0}+a_{x} t$
$2\left(\frac{x-x_{0}}{t}\right)=2 v_{x 0}+a_{x} t$
$x-x_{0}=v_{x 0} t+\frac{1}{2} a_{x} t^{2}$
$x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2}$
- Solve the second equation for time and substitute it into the first equation.
$v_{x}=v_{x 0}+a_{x} t$
$t=\frac{v_{x}-v_{x 0}}{a_{x}}$
$v_{x}=2 a_{x}\left(\frac{x-x_{0}}{v_{x}-v_{x 0}}\right)-v_{x 0}$
- Rearrange the equation

$$
\begin{aligned}
& v_{x}+v_{x 0}=2 a_{x}\left(\frac{x-x_{0}}{v_{x}-v_{x 0}}\right) \\
& \left(v_{x}+v_{x 0}\right)\left(v_{x}-v_{x 0}\right)=2 a_{x}\left(x-x_{0}\right) \\
& v_{x}^{2}-v_{x 0}^{2}=2 a_{x}\left(x-x_{0}\right) \\
& v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right)
\end{aligned}
$$

Example 1

\qquad

A rolling ball starts with a speed of $2.0 \mathrm{~m} / \mathrm{s}$ \qquad and slows at a constant rate of $0.50 \mathrm{~m} / \mathrm{s}^{2}$. Calculate its velocity after 2.0 s . \qquad
$v_{x}=v_{x 0}+a_{x} t$ \qquad
$v_{x}=2+(-0.5) 2$
$v_{x}=1 \mathrm{~m} / \mathrm{s}$ \qquad
\qquad
\qquad

Example 2

\qquad

A car accelerates at a constant rate from \qquad $15 \mathrm{~m} / \mathrm{s}$ to $25 \mathrm{~m} / \mathrm{s}$ while it travels 125 m . How long does it take to achieve this speed? \qquad

$$
\begin{array}{ll}
v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right) & v_{x}=v_{x 0}+a_{x} t \\
a_{x}=\frac{v_{x}^{2}-v_{x 0}^{2}}{2\left(x-x_{0}\right)}=\frac{25^{2}-15^{2}}{2(125)} & t=\frac{v_{x}-v_{x 0}}{a_{x}}=\frac{25-15}{1.6} \\
a_{x}=1.6 \mathrm{~m} / \mathrm{s}^{2} & t=6.3 \mathrm{~s}
\end{array}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- When air resistance is not a factor, all objects near Earth's surface fall with an acceleration of about $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
- Although this value decreases slightly with increasing altitude, it may be assumed to be essentially constant.
- The value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ is labeled \mathbf{g} and is referred to as the acceleration due to gravity.
- Since gravity pulls objects towards the earth's surface, this acceleration is always down (negative).

What happens when a ball is thrown straight up in the air?

- On its way up, the ball slows down \qquad
- The acceleration due to gravity is in the opposite direction of the velocity \qquad of the ball

- On its way down, the ball speeds up
- The acceleration due to gravity is in
\qquad the same direction as the velocity of
\qquad the ball

\qquad
- What happens to the ball at the very top of its path?
- It stops
- What is the acceleration at that point?
- It is still the acceleration due to gravity and it is still down
- The direction of the ball is changing instead of the speed.

\qquad

\qquad

Example 1

\qquad
A ball is dropped from a height of 4.0 m . \qquad What is its velocity just before it hits the ground? \qquad
$v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right)$
$v_{x}=\sqrt{2 a_{x} x}=\sqrt{2(-9.8)(-4.0)}$
$v_{x}=8.9 \mathrm{~m} / \mathrm{s}$ \qquad
\qquad
\qquad

- Graphing the motion.

Example 2

A ball is thrown straight up in the air with a
\qquad
\qquad velocity of $5.0 \mathrm{~m} / \mathrm{s}$ from a height of 2.0 m .
a) How high above the ground does the ball
\qquad go?
b) How long is the ball in the air?
a) How high above the ground does the ball go?
$v_{x}^{2}=v_{x 0}^{2}+2 a_{x}\left(x-x_{0}\right)$
$x=\frac{-v_{x 0}^{2}}{2 a_{x}}+x_{0}=\frac{-\left(5^{2}\right)}{2(-9.8)}+2$
$x=3.3 \mathrm{~m}$
b) How long is the ball in the air? \qquad
$x=x_{0}+v_{x 0} t+\frac{1}{2} a_{x} t^{2}$
$0=2+5 t+\frac{1}{2}(-9.8) t^{2}$
$4.9 t^{2}-5 t-2=0$
$t=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(4.9)(-2)}}{2(4.9)}=1.3,-\nless 1$
$t=1.3 \mathrm{~s}$

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The position-time graph of an object with constant velocity ($a=0$).

- Substituting into the equation of a line

 gives$$
\begin{aligned}
& y=m x+b \\
& x=\bar{v} t+x_{0}
\end{aligned}
$$

\qquad
\qquad

- Since velocity is constant $\bar{v}=v_{x 0}$

$$
x=x_{0}+v_{x_{0}} t
$$

Note: This is the equation that
\qquad
\qquad we derived earlier with $a=0$.

- If the acceleration is zero, then a velocitytime graph is a constant line.
- In this example,

The position-time graph of an object that has a constant acceleration not equal to zero.

- The velocity at any point (instantaneous velocity) is the slope of the tangent line at that point.

- Calculating the velocity at each point and plotting it against time gives us a velocitytime graph.

- The slope of the graph is the acceleration.

